前言
我们在项目中经常遇到IN查询,同时IN的参数太多甚至大几百上千,会导致PG性能下降严重进而接口反应太慢。这个应该是前期没规划好,但是事已至此还是要对此进行优化。第一个就是想到通过多线程去查,比如原来是
SELECT * FROM device WHERE id IN (1, 2, 3, 4)
拆分为
SELECT * FROM device WHERE id IN (1, 2) SELECT * FROM device WHERE id IN (3, 4)
并行执行,然后将返回结果合并。
因为用的地方多,每次都要写很麻烦,所以结合SpringAOP写了一个基于注解优化方案,只需要打上注解就可以提升性能了。实现效果以及具体实现逻辑如下:
@SplitWorkAnnotation(setThreadPool = LIST_DEVICE_EXECUTOR, splitLimit = 20, splitGroupNum = 10)
public listDeviceDetail(Long projectId,@NeedSplitParam List deviceId){
......
}
适用场景和不适用场景
主要适用大批量IN查询,或者某个参数特别大导致性能问题的同时结果能简单合并的,就是说符合以下公式的:
fun(a,b,bigList) = fun(a,b,bigListPart1) + fun(a,b,bigListPart2)
这里的加可以是:合并运算,SUM,COUNT以及求TOPN(合并后再取TOPN)
不适用的典型场景有分页以及不符合上面公式的场景
定义AOP注解
需要定义的注解参数:
- setThreadPool: 线程池,可能阻塞比较大,不要用公共的线程池最好自己定义一个
- handlerReturnClass: 返回值回调函数,对应不同返回值处理逻辑:可能是合并可能取前十条可能求和
- splitLimit: 超过多少需要拆分
- splitGroupNum: 拆分时每组多少个
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface SplitWorkAnnotation {
/**
* 设置线程池
*
* @return {@link ThreadPoolEnum}
*/
ThreadPoolEnum setThreadPool();
/**
* 返回值处理
*
* @return {@link Class}<{@link ?} {@link extends} {@link HandleReturn}>
*/
Class extends HandleReturn> handlerReturnClass() default MergeFunction.class;
/**
* 超过多少开始拆分 >
*
* @return int
*/
int splitLimit() default 1000;
/**
* 拆分后每组多少
*
* @return int
*/
int splitGroupNum() default 100;
}
标记需要拆分参数的注解
加在需要拆分的参数上,只支持一个。因为两两组合情况非常复杂,也一般不符合实际使用情况。
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.PARAMETER)
public @interface NeedSplitParam {
}
使用AOP实现拆分多线程并发调用合并逻辑
@Aspect
@Component
@Slf4j
public class SplitWorkAspect {
/**
* 切入点表达式,拦截方法上有@NeedSplitParaAnnotation注解的所有方法
*
* @return void
* @author tangsiqi
* @date 2021/8/9 18:17
*/
@Pointcut("@annotation( com.demo.SplitWorkAnnotation)")
public void needSplit() {
}
/**
* @param pjp
* @return {@link Object}
* @throws Throwable
*/
@Around("needSplit()")
public Object around(ProceedingJoinPoint pjp) throws Throwable {
Signature signature = pjp.getSignature();
MethodSignature methodSignature = (MethodSignature) signature;
Method targetMethod = methodSignature.getMethod();
SplitWorkAnnotation splitWorkAnnotation = targetMethod.getAnnotation(SplitWorkAnnotation.class);
Object[] args = pjp.getArgs();
int splitLimit = splitWorkAnnotation.splitLimit();
int splitGroupNum = splitWorkAnnotation.splitGroupNum();
if (args == null || args.length == 0 || splitLimit <= splitGroupNum) {
return pjp.proceed();
}
int needSplitParamIndex = -1;
for (int i = 0; i < targetMethod.getParameters().length; i++) {
Parameter parameter = targetMethod.getParameters()[i];
NeedSplitParam needSplitParam = parameter.getAnnotation(NeedSplitParam.class);
if (needSplitParam != null) {
needSplitParamIndex = i;
break;
}
}
if (needSplitParamIndex == -1) {
return pjp.proceed();
}
Object needSplitParam = args[needSplitParamIndex];
//只能处理Object[] 和 Collection
if (!(needSplitParam instanceof Object[]) && !(needSplitParam instanceof List) && !(needSplitParam instanceof Set)) {
return pjp.proceed();
}
//如果目标参数长度小于拆分下限跳过
boolean notMeetSplitLen = (needSplitParam instanceof Object[] && ((Object[]) needSplitParam).length <= splitLimit)
|| (needSplitParam instanceof List && ((List) needSplitParam).size() <= splitLimit)
|| (needSplitParam instanceof Set && ((Set) needSplitParam).size() <= splitLimit);
if (notMeetSplitLen) {
return pjp.proceed();
}
// 去重,这一步看情况也可以不要
if (needSplitParam instanceof List) {
List> list = (List>) needSplitParam;
if (list.size() > 1) {
needSplitParam = new ArrayList<>(new HashSet<>(list));
}
}
//算出拆分成几批次
int batchNum = getBatchNum(needSplitParam, splitGroupNum);
if (batchNum == 1) {
return pjp.proceed();
}
CompletableFuture>[] futures = new CompletableFuture[batchNum];
ThreadPoolEnum threadPool = splitWorkAnnotation.setThreadPool();
if (threadPool == null) {
return pjp.proceed();
}
try {
for (int currentBatch = 0; currentBatch < batchNum; currentBatch++) {
int finalNeedSplitParamIndex = needSplitParamIndex;
int finalCurrentBatch = currentBatch;
Object finalNeedSplitParam = needSplitParam;
futures[currentBatch] = CompletableFuture.supplyAsync(() -> {
Object[] dest = new Object[args.length];
//这一步很重要!!!因为多线程运行不能用原理的参数列表了,不然会导致混乱
System.arraycopy(args, 0, dest, 0, args.length);
try {
//将其他参数保持不变,将需要拆分的参数替换为part参数
dest[finalNeedSplitParamIndex] = getPartParam(finalNeedSplitParam, splitGroupNum, finalCurrentBatch);
return pjp.proceed(dest);
} catch (Throwable e) {
throw new RuntimeException(e);
}
}, threadPool.getThreadPoolExecutor());
}
CompletableFuture all = CompletableFuture.allOf(futures);
all.get();
Class extends HandleReturn> handleReturn = splitWorkAnnotation.handlerReturnClass();
List
定义处理返回值的接口
/**
* 处理返回结果接口
*
* @author: TangSiQi
* @date: 2021年08月13日15:42
**/
public interface HandleReturn {
/**
* 处理返回结果方法
*
* @param t 拆分后多次请求结果
* @return R 处理后的返回结果
* @author tangsiqi
* @date 2021/8/13 15:55
*/
Object handleReturn(List t);
}
实现了一个简单合并的
/**
* 集合List等合并策略
*
* @author: TangSiQi
* @date: 2021年08月13日15:32
**/
public class MergeFunction implements HandleReturn {
@Override
public Object handleReturn(List results) {
if (results == null) {
return null;
}
if (results.size() <= 1) {
//todo
return results.get(0);
}
//这里自己要知道具体返回类型
List first = (List) results.get(0);
for (int i = 1; i < results.size(); i++) {
first.addAll((List) results.get(i));
}
return first;
}
}
有用的话希望大佬们点点赞,点点关注!
来源:
juejin.cn/post/7408859165433577482